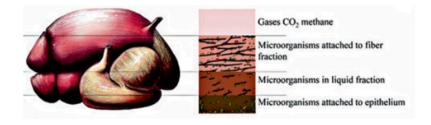
I 대동물(A) - 1.3 Rumen Fermentation

미생물에 의한 발효를 통해 섬유질이 풍부한 식물을 소화한다. 어떻게?

1. Rumen Fermentation

Definitions of Fermentation


- Rumen은 기능적으로 'biofermentor'
 - 발효 과정을 거치며 short-chain fatty acids(휘발성 지방산), ammonia, modified fats, methane 등이 생성됨.
- 발효란 무엇인가? 혐기성 세균이 포도당을 분해하여 다양한 휘발성 지방산 등을 만들어내는 과정 (Anaerobic respiration or <u>anaerobic fermentation</u>)
- 소와 양에서 발효의 60% 이상이 반추위에서, 10-15%만이 대장에서 일어남
 - 설치류는 대부분 대장과 맹장에서 / 사람, 개, 고양이에서는 발효를 하지 않음

■ Energy feed digestion (앞으로 배울 내용 요약)

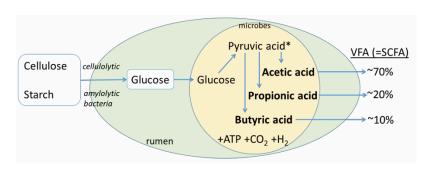
- 반추위의 미생물들은 fiber (simple & complex carbohydrates) → VFAs로 전환한다.
 - acetic, propionic, butryric acid로 이루어진 휘발성 지방산(VFAs)은 에너지원의 50-70%를 담당
- High forage diets (분해 느림) → acetic acid (60-70%) > propionic, butyric acids (각 15% 전후)
- grain or finely ground forages (분해 빠름) → acetic acid 생산 감소, propionic acid 생산 증가(up to 40%).
- Rumen microbes는 <u>섬유질의 30~50%</u>, 전분(starch)의 60%, 대부분의 당을 소화함.

The Rumen Ecosystem

- cellulolytic bacteria가 cellulase 합성 ⇒ cellulose가 glucose로 분해됨. ⇒ VFAs로 전환
 - cellulose : 세포벽을 구성하는 주요 다당류. (Cellulose monomer = glucose ×2)
 - cellulase : cellulose의 linkage를 자르는 효소
- 반추위는 하나의 생태계와도 같다.
 - 미생물과 위는 서로 에너지원을 공급하는 공생관계(symbiosis)
 - 미생물이 만들어내는 대사산물로 반추물은 소화에 이용하고, 음식물을 통해 미생물은 에너지원을 공급받음.
 - 미생물의 population을 보면 92%가 bacteria + protozoa, fungi

- 각 층마다 살고 있는 미생물의 종류가 다름
 - 액체층 : 발효를 빨리 할 수 있는 세균
 - 사료층 : cellulose를 잘 분해할 수 있는 → cellulolytic bacteria가 많음.
- Bacterial attachment : 미생물은 사료의 fiber에 달라붙어서 효소를 분비, 잘게 부수는 역할을 수행.
- Fat feeding → reduces bacterial attachments: 사료에 지방이 많으면 미생물이 표면에 달라붙기 어려워 소화 기능이 저하됨.

12. Fermentation Process


탄수화물 - 단백질 - 지방 순으로 살펴보자. (내용 약간 재구성)

1) Carbohydrates

- 반추동물이 먹는 사료는 크게 Forage(조사료, 건초 등) / Concentrate(농후사료, 옥수수 등) 으로 나눌 수 있다.
- 각각 섬유질과 전분을 많이 함유하기에 cellulolytic / amylolytic bacteria가 작용하여 분해.
- 그 과정에서 생성되는 VFAs (Acetate + propionate + butyrate)
- 이 VFAs들을 당과 지방으로 쪼개어 흡수, 에너지원으로 사용한다.

요약	Forage (조사료)	Concentrate (농후 사료)
주성분	섬유질 (cellulose, hemicellulose) : 풀, 건초 등	전분 (starch) : 에너지, 단백질이 높은 곡물류
미생물	Cellulolytic, Hemicellulolytic Bacteria	Amylolytic Bacteria
요구 pH	pH 6-7	pH 5-6
대사 산물	acetate 많이 생성	propionate, butyrate 많이 생성
사료	F:C=80:20이면 → acetate 생성 활발	F:C=20:80이면 → propionate 생성 활발 빠른 발효 ⇒ VFA 증가, pH 감소 ⇒ 산증 주의!
영양소	Acetate → 지방 합성	Propionate → 포도당 합성

1.1 Rumen microbes

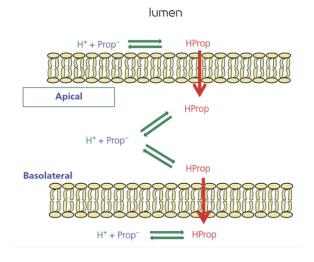
Cellulolytic, Hemicellulolytic Bacteria	Amylolytic Bacteria
- cellulose, hemicellulose (섬유질) 소화 - pH 6-7 요구	- starches, sugars (전분) 소화 - pH 5-6 요구.
- acetate 많이 생성됨.	- propionate, butyrate 많이 생성.

- 그 과정에서 **methane production** (CO₂+H₂ ⇒ methane)을 일으키는 세균들이 있음.
- 미생물 입장에서는 에너지원이지만, 반추동물 입장에서는 에너지 손실 → 트림을 통해 배출!

1.2 VFA production

- VFAs : Acetate, propionate, butyrate
- VFA 생성은 forage:concentrate ratio 에 의해 결정됨.

Forage:concentrate		
80:20	Acetate 생산하는 미생물 활발해짐	
20:80	Propionate 생산 미생물 활발해짐	VFA 증가, pH 감소


• 반추위의 pH는 일정한 것이 아니라, 공급되는 사료의 양과 종류에 따라 달라짐.

1.3 Rumen pH balance

Rumen acidosis 발생 과정 (농후사료↑ - Propionate↑ - pH 감소) Bacterial growth pH < 5.0 S. bovis 👢 Lactobacilli Bacterial growth Ruminal acidosis M. Elsdenii 🎩 Lactic Fermentation stops Lactic acid Metabolic acidosis Nocek, 1997 absorption

- 전분, 당과 같은 non-structural carbohydrates의 급격한 증가는..
 - 빠르게 발효되면서, rumen의 pH를 낮춤 (⇒ <u>rumen acidosis</u>)
- <u>갑자기 많은 양의 농후사료</u>를 제공하면 → 미생물이 많이 자람 → <u>VFA 생성량 증가 → pH 감소</u> → pH 낮은 환경에서 잘 자라는 미생물 증가 → <u>lactate</u> 생성 증가 → pH 더 감소 → pH 6-7에서 활동하는 미생물 <u>증식 억제</u>, 발효 중단, **대사성 산증**으로 진행

- pH의 balance : pH 7이 가장 적절.
 - 1 **Buffering capacity**: Biocarbonate를 공급하는 침에 의해 lumen에 있는 pH가 조절됨 (되새김질 과정에서 침 많이 발생)
 - 2 Acid production (농후사료의 비율): Total acids & types of acids를 결정
 - 3 Acid absorption (rumen papillae) 도 영향을 줌.

- 70%의 VFA는 rumen-reticulum에서 흡수되며, 표면적을 넓히는 papillae가 중요한 역할을 함.
- 비이온화 상태로 존재일수록 쉽게 투과
 - 중성의 pH에서 비이온화 상태로 존재하여 잘 투과되고, pH가 낮아질수록 이온화되어 덜 흡수됨.

1.4 Energy source

	Acetic, butyric acid	Propionic acid
대사 경로	Ketogenic	Gluconeogenic
대사 결과	Ketone body, Fatty acid 생산	Glycerol, Lactate 생산
	지방 합성, Milk production	탄수화물을 직접 흡수하지 못하고, VFA 형태로 흡수한 뒤 가공하여 에너지로 사용.

이렇게 음식물을 VFAs 형태로 흡수하면 에너지원으로 쓸 수 있다.

- 1kg milk를 생산하려면 72g 의 glucose가 필요함.
- 분만 전후로 우유 생산량이 급격히 늘어나니, 요구량에 맞춰 영양 관리를 해 주는 것이 중요.

1.5 Manipulation of microbial metabolism

- 항생제(ionophores) : 특정 미생물의 membrane을 파괴하여 죽임
 - Acetic acid, methane 생산 감소.
 - 남은 에너지로 propionate 더 많이 생산

2) Proteins

Proteins	
Rumen-degradable protein NPN (non-protein nitrogen)	Rumen에서 분해 → 소장에서 흡수 분해 산물인 urea는 다시 saliva, rumen으로 recycling.
Bypass protein (UDP, undegradable dietary protein)	rumen에서 흡수하면 어느 정도 아미노산 손실. 바로 소장에서 흡수.

단백질이 많이 필요하면, bypass protein이 많이 함유된 사료로 채워줄 수 있음.

13) Fats

- **UFA** (Unsaturated Fatty Acids, 불포화지방산) : rumen bateria에 toxic → 포화지방산으로 바꿔야 함.
 - Biohydrogenation(BH) : 수소를 결합하여 이중결합을 없애면서 포화 지방산으로 변환.

13. Energy digestion

VFAs	Rumen의 bloodstream으로 흡수되어 조직으로 이동 유지/성장/생식/우유 생산의 에너지로 사용됨.	
Proteins, NPN	Rumen에서도, intestine에서도(Bypass protein) 흡수됨. Protein breakdown: 사료의 40-75% 정도 일어남 Protein → ammonia, organic acids, amino acids로 변환 NPN (nonprotein nitrogen)도 ammonia를 생산함. 1위 미생물이 단백질을 합성하기 위해 ammonia 필요, 남은 ammonia는 하부 소화기에서 흡수됨.	
Vitamin	Rumen microbes는 소의 성장과 유지에 필요한 vitamin K와 vitamin B (all) 을 스스로 합성 → 추가로 급여할 필요는 없음. 스트레스 환경에 있는 소는 niacin(B3), thiamine(B1) 추가해주면 좋음.	
Fat	보통 소장에서 소화와 흡수 일어남. 1위 미생물이 불포화 → 포화 지방산으로 바꿔주기 때문에, 단위동물보다 많은 포화지방산을 흡수. 불포화지방산을 많이 급이 → rumen bacteria에 toxic + rumen pH 감소 + 소화 느려질 수 있음.	