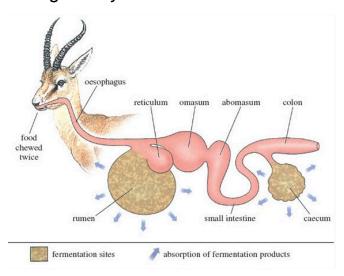
I 대동물(A) - 1.2 Digestive System of Ruminants

I 1. Basic types of digestive systems

Monogastrics	Ruminants	Hind Gut Fermentors
개 고양이 닭 돼지 칠면조	소 양 염소 사슴 기린	말 토끼 타조
체내 소화효소에 의해 음식물 분해, 영양소 흡수. 섬유소 분해 능력 없음.	4개의 위를 가짐. 미생물에 의해 <mark>발효</mark> 되면서 소화. 제1위에서 대부분의 소화가 이루어짐.	위가 아닌 <mark>맹장</mark> 과 <mark>대장</mark> 에서 미생물 <mark>발효</mark> 를 통해 대부분의 소화가 이루어짐.

I Definition of digestion & rumination


- 소화 = 음식물을 섭취하고 배설하는 것 (X)
- 소화(Digestion) = 음식물을 섭취하고 분해해서 <u>영양분을 흡수</u>하고 <u>에너지원을 공급</u>받는 것.
- 반추동물은 전위에서 발효를 통해 소화 (Foregut fermentaers)
 - Alloenzymatic digestion : 자기 몸에서 생성되는 효소가 아니라, 외부 생물이 만든 효소를 이용해 영양분을 흡수하고 분해.
- Rumination : 되새김질 = 반추동물 소화에서 가장 중요.
 - 저작해서 다시 저장하고, 소화의 과정을 거치는 것. (ruminare = chew agaion)
 - 내용물을 다시 mixing하고 충분히 분해하여 발효가 잘될 수 있도록 함.

Ruminant feeding types

• Rumen Papillae : 영양분 섭취를 증대하기 위해 papillae의 모양이 다름

Concentrate selectors (browser)	Intermediate types	Grass/roughage eaters (방목가축, grazer)
소화가 용이한 식물, 과일을 선호		자유롭게 풀을 뜯음. 섬유질을 소화하는 능력이 충분.
130	140	250
고단백 식물, 나뭇잎 섭취 융모가 크고 길지만 듬성듬성		섬유질이 풍부한 식물 흡수력 증가를 위해 융모가 치밀함

12. Digestive System

- 주요 구성 요소 : Mouth, Esophagus, Four-chamber stomach, Small intestine, Large intestine
- 그외 Pancreas, Gall bladder 등

1) Teeth & Mouth

- 반추동물은 <mark>윗니가 없음</mark>. 대신 딱딱하고 견고한 dental pad 존재.
- 풀을 끊어먹지는 못하지만, 유연한 혀와 주둥이로 풀을 잡고 저작함. (Prehension & mastication)
- 아래이빨만 존재하고, 어금니가 큼.

Salivation

- Buffering : 입의 산성도를 중화시켜 적절한 pH를 유지해주는 역할.
- 침의 bicarbonate가 1위의 산성도를 적절히 유지해줌. (pH 6.2-6.8)
- 침에는 소화효소가 많이 존재, 말이 10-12liters/d를 분비하는 데 반해 소는 130-200liters/d의 침을 분비함.

Cud Chewing

- 소화를 도와주는 과정, 되새김질. 하루 중 거의 35-40%를 되새김질 하는 데 보냄.
- Grain or finely ground 사료는 소화가 빨리 되는 반면, 섬유질이 풍부한 사료(건초 등)은 되새김질이 많이 필요.
- 처음에 대충 씹고 넘김 → regurgitate → re-chew하여 타액과 섞이고 더 잘게 분해됨 → 미생물이 발효시키기 용이

1 2) Esophagus

- 식도의 가장 큰 차이점 : skeletal muscle로 구성됨. 수의조절 가능.
- <u>3개의 괄약근(sphincters)</u> 존재 : 되새김질, 가스 배출를 위해 활성화됨
 - 역방향 연동운동(reverse peristalsis, *antiperistalsis*) 가능 (위 ↔ 입)
- Regurgitation : 소화를 위해 입으로 내보냈다가 다시 위로 돌아오는 정상 생리학적 현상.
- Vomiting : 구토 중추를 자극해 복압에 의해 내용물이 다시 나오는 병리학적 현상.
 - 반추동물은 구토를 거의 하지 않음.
 - 말은 구토를 하지 못함.

13) Stomach

- Rumen (제1위, *paunch*): 가장 중요, 가장 큼. 70% 이상의 미생물 발효가 여기서 일어남.
- Reticulum (제2위, *honeycomb*) : 앞쪽에 작게 위치, 심장에 가장 가까움.
- Omasum (제3위, *manyplies*)
- Abomasum (제4위) : 소화 효소 분비, 단위 동물의 위와 같은 역할.

4 compartments	
Rumen (제1위)	가장 큰 위, 미생물의 발효가 가장 많이 일어남. 1위의 미생물 발효로 생성되는 휘발성 지방산(VFAs, Volatile fatty acids)이 주요 에너지원. (+ 1위 미생물은 vitamin B, K, amino acids 처럼 유기물질도 합성함.) Papillae가 있어 흡수 표면적을 증가시킴.
Reticulum (제2위)	심장 가까이, 앞쪽에 위치한 pouched-like structure, 벽면이 벌집 모양. (" <i>Honeycomb</i> ") 1위와 하나의 fold만 사이에 둠 → 경계선이 불명확하여 <mark>rumino-reticulum</mark> 으로도 명명. 앞쪽에 위치 → 무겁거나 날카로운 이물(못 등)이 보통 2위로 떨어짐. ⇒ Hardward disease
Rumino-reticulum (Reticulo-rumen)	 위에서부터 3개 층으로 구분됨 : Gases (발효로 생성된 가스) - Fibrous mat (분해 중) - Liquid (거의 발효됨) - Ruminal pillars : 힘줄 같은 역할로, 수축하여 안의 내용물들을 섞어줌. - 수축과 이완은 미주신경에 의해 조절됨. (vago-vagal reflexes) - 수축 운동은 3회/2분, 혹은 1-2회/1분 청진되면 건강한 상태.
Contractions	Inspiration 단계에서 흉강에 음압 형성 → 제2위-제1위의 수축, 분문부가 열림 → 내용물이 식도를 통해 구강까지 역류 → 되새김질 후 다시 이완하면서 삼킴.
Belching, Eructation (트림)	발효 과정에서 생산되는 가스를 지속적으로 배출해야 함. * 고창증(bloat): 가스를 배출하지 못해 1위에 엄청난 압력이 가해짐, 폐사 위험. - 시간당 70-120L의 가스 배출. 이 중 20-30%를 차지하는 CH ₄ 가 환경오염의 주범.
Rumen Papillae	융모가 잘 발달되어 있어야 VFAs 흡수 용이. 어릴 때 무엇을 섭취하냐에 따라 융모의 발달이 다름. Butyrate(지방산의 하나)이 papillae의 형성에 결정적.
Omasum (제3위)	Papillae가 종이나 낙엽 모양. 물을 흡수하고, 충분히 분해되지 않은 큰 음식물을 필터링함.
Abomasum (제4위=진위)	소화 효소와 위산을 분비 + 췌장에서 분비된 소화효소를 받음. / 발효가 일어나지 않음. 유일하게 glandular lining을 가짐. (secrete mucous ↑) 위산 분비로 인해 산성 (pH 2-3) 환경.

4) Small intestine: duodenum, jejunum, ileum

- 대부분의 영양소의 흡수가 일어나는 곳. <u>혈액</u>과 <u>림프</u>를 통해 영양분이 흡수됨.
- 표면적을 넓히기 위한 villi 존재해 효과적인 흡수를 도움.

15) Large intestine: cecum, colon, rectum

- Cecum(맹장) : 소장과 대장이 만나는 부위.
 - 다른 종류의 미생물에 의한 발효를 통해 소화가 덜 된 나머지 음식물을 소화함.
- 나머지 결장과 직장에서 남은 물과 무기질을 흡수